NEW YORK UNIVERSITY COURANT INSTITUTE OF MATHEMATICAL SCIENCES

FREDHOLM OPERATORS AND THE ESSENTIAL SPECTRUM

MARTIN SCHECHTER

PREPARED UNDER

CONT RACT NO. DA31-124-ARO-D-204
WITH THE
U. S. ARMY RESEARCH OFFICE

FREDHOLM OPERATORS AND THE

ESSENTIAL SPECMRUM

Contract No. DA31-124-ARO...D-204
Jaruary 1965

Martin Schechter

Department of Army Project No. 20011501B704
"Request for additional copies by Agencies of the Department of Defense, their contractors, and other Government agencies should be directed to:

Defense Documentation Center Cameron Station
Alexandria, Virginia 22314
Department of Defense contractors must have established for DDC services or have their "need-ta-know" certified by the cognizant military agencies of their project or contract." Reproduction in whole or in part is permitted for any purpose of the United States Government.

Abstract

Fredholm operators are defined and their basic properties are proved. The essential spectruin of an arbitrary closed operator is considered and its invariance under several kinds of perturbation is proved.

I. Introduction

We first give a complete treatment of Frecholn operators. Host of the results are found in the literature (e.g., [4, 8]), but we have been able to substantially simplify proofs in several instances. The ceepest theorem we make use of is the closed graph theorem. We are able to avoid completely the concept of the opening between two subspaces.

Next we give a proof of a classical theorem of Weyl [13] on the invariance of the essential spectrun under compact perturbations and give two definitions for general closed operators in a Banach space, one of them due to Wolf [14]. We then consider more general types of perturbations. Further results may be founcl in [10].

Remarks on specific results and nethods are given at the end.

2. FredhoIm Cperators

A linear operator A from a Banach space X to a Banoch space Y will be called a Fredholn operator if

1. A is closed
2. the domain $D(A)$ of A is clense in X
3. $a(A)$, the dinension of the null space $\mathbb{N}(A)$ of A, is 1 inite
4. $R(A$.$) , the range of A$, is closed in Y
5. $B(A)$, the codinension of $R(A)$ in Y, is finite

The index of a Fredholm operator A is defined as

$$
i(A)=\alpha(A)-B(A)
$$

We now make several observations. The set of Fredholn operators from X to Y will be denoted by $\Psi(X, Y)$.

1. If we decompose X into

$$
\begin{equation*}
X=N(A)+X^{\prime} \tag{1}
\end{equation*}
$$

where X^{\prime} is a closed subspace of X, then

$$
\begin{equation*}
\|x\| \leq \text { const. }\|A x\| \tag{2}
\end{equation*}
$$

holds for all $x \in D(A) \cap X^{\prime}$. This inerely expresses the fact that A restricted to $D(A) \cap X^{\prime}$ has as inverse defined everyWhere on $R(A)$, which is a Banach space. Hence this closed inverse is bounded.
02. If A is closed, $\alpha(A)<\infty$ and (2) holds, then $R(A)$ is closed. For if $A x_{n} \rightarrow y, x_{n} \in D(A) \cap X^{\prime}$, then $X_{n} \rightarrow X \in X^{\prime}$ 。 Thus $x ヶ D(A)$ and $A x=y$.
03. If $A=Y(X, Y)$, there is a bounded operator A^{\prime} from Y to $D(A) \cap X^{\prime}$ such that
(3)

$$
\begin{array}{lll}
A^{\prime} A=I & \text { on } & D(A) \cap X^{\prime} \\
A A^{\prime}=I & \text { on } & R(A),
\end{array}
$$

(4)
while A^{\prime} vanishes on any prescribed complement of $R(A)$ in Y. (Here I denotes the identity operator.)

Proor. Obvioirs.
04. The operator A^{\prime} also satisfies

$$
\begin{equation*}
A^{\prime} A=I+F_{I} \quad \text { on } \quad D(A) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
A A^{\prime}=I+F_{2} \quad \text { on } \quad Y \tag{5}
\end{equation*}
$$

where the operators F_{i} are bounded and have finite dinensional ranges.

In fact $A^{\prime} A-I$ vanishes on $D(A) \cap X^{\prime}$ and hence maps $D(A)$ into the image of $\mathbb{N}(A)$. A similar statement holds for $A A^{1}-I$.
05. If A is closed, $D(A)$ dense and there are bounded operators A_{i} from Y to X and compact operators K_{1} on X, K_{2} on Y such that

$$
\begin{array}{lll}
A_{1} A=I+K_{I} & \text { on } \quad D(A) \\
A A_{2}=I+K_{2} & \text { on } \quad Y, \tag{3}
\end{array}
$$

then $A \in \Psi(X, Y)$.
Proof. $\alpha(A) \leq \alpha\left(I+K_{1}\right)<\infty$ and $B(A) \leq B\left(I+K_{2}\right)<\infty$ (F. Riesz). We must show that $R(A)$ is closed. Suppose
$\left\{x_{n}\right\} \subset D^{\prime}(A) \cap X^{1},\left\|x_{n}\right\|=1$ and $A x_{n} \rightarrow 0$. Since A_{1} is bounded, $\left(I+K_{1}\right) x_{n} \rightarrow 0$. Since $\left\{x_{n}\right\}$ is bounded, there is a subsequence (also denoted by $\left\{x_{n}\right\}$) for which $K_{1} x_{n}$ converges to sone element z. Thus $x_{n} \rightarrow-z$. Since A is closed $z \in D(A)$ and $A z=0$, i.e., $z \in \mathbb{N}(A)$. Since X^{\prime} is closed, $z \in X^{\prime}$ anc? hence $z=0$. But $\|z\|=\lim \left\|x_{n}\right\|=1$. This shows that (2) holds. Thus $F(A)$ is closed by 02.

We shall also need the following important lema.
Lemna 1. If $A \in \Psi(X, Y)$ and $B \in \Psi(Z, X)$, then $A B \in \Psi(Z, Y)$
and
(9)

$$
i(A B)=i(A)+i(B) .
$$

Procf. Clearly, $D(A B)$ is dense in $Z(01)$. Set

$$
\begin{aligned}
& X_{0}=R(B) \oplus \mathbb{N}(A) \\
& R(B)=X_{0} \oplus X_{1} \\
& \mathbb{N}(A)=X_{0} \oplus X_{2} \\
& X=R(B) \oplus X_{2} \oplus X_{3}
\end{aligned}
$$

Then X_{0}, X_{2}, X_{3} are finite dimensional and X_{1} is closed. Since $D(A)$ is dense in X, we can take X_{3} to be contained in $D(A)$. Set $d_{i}=\operatorname{dim} X_{i}$. Then

$$
\begin{aligned}
& a(A B)=a(B)+a_{0} \\
& B(A B)=a(A)+a_{3} \\
& a_{0}+d_{2}=a(A) \\
& a_{2}+d_{3}=B(A)
\end{aligned}
$$

These show that $\alpha(A B)$ and $B(A B)$ are finite and (9) holds. We must also show that $R(A B)$ is closed. Now $R(A B)$ is the range of A on $D(A) \cap X_{1}$. In $A x_{n} \rightarrow I$ for $\left\{x_{n}\right\}=D(A) \cap X_{1}$, we have by (2)

$$
\left\|x_{\mathrm{m}}-x_{\mathrm{n}}\right\| \leq \text { const. }\left\|A \cdot\left(x_{\mathrm{in}}-x_{\mathrm{n}}\right)\right\| \rightarrow 0
$$

and since X_{1} is closed, $x_{n} \rightarrow X \in X_{1}$. Since A is closed, $x \in D(A)$ and $A x=f$. Thus $R(A B)$ is closed.

It remains to show that $A B$ is closed. Suppose $\left\{z_{n}\right\} \subset D(A B), z_{n} \rightarrow z, A B z_{n} \rightarrow y$. Write

$$
E z_{n}=x_{n}^{(0)}+x_{n}^{(1)},
$$

Where $x_{n}^{(0)} \in \mathbb{N}(A)$ and $x_{n}^{(I)}: x^{\prime}$. Then by $(2) x_{n}^{(1)} \rightarrow x^{(I)}=x^{\prime}$. If $\left\|x_{n}^{(0)}\right\| \leq$ const., there is a subsecuence (also denoted by $\left\{x_{n}\right\}$ for which $x_{n}^{(0)} \rightarrow x^{(0)} \in \mathbb{N}(A)$. Thus $E z_{n} \rightarrow x^{(0)}+x^{(1)}$ and since B is closed $z \in D(E)$ and $E z=x^{(0)}+x^{(I)}$. Since A
is closed $x^{(0)}+x^{(I)} \in D(A)$ and $A\left(x^{(0)}+x^{(I)}\right)=y$. Thus $z \in D(A B)$ and $A B z=y$. We now show that $\left\{x_{n}^{(0)}\right\}$ is bounded. For if $\zeta_{n}=\left\|x_{n}^{(0)}\right\| \rightarrow \infty$, set $u_{n}=\zeta_{n}^{-1} x_{n}^{(0)}$. Then $\left\|u_{n}\right\|=1$ and hence there is a subsecuence (also denoted by $\left\{u_{n}\right.$) such that $u_{n} \rightarrow u \in \mathbb{N}(A)$. Moreover

$$
B\left(\zeta_{n}^{-1} z_{n}\right)-u_{n}=\zeta_{n}^{-1}\left(B z_{n}-x_{n}^{(0)}\right)=\zeta_{n}^{-1} x_{n}^{(1)} \rightarrow 0
$$

Hence $B\left(\zeta_{n}^{-1} z_{n}\right) \rightarrow u_{0}$ Since $\zeta_{n}^{-1} z_{n} \rightarrow 0$ and B is closed, $u=0$. This is impossible since $\|u\|=\operatorname{lin}\left\|u_{n}\right\|=1$. This completes the proof.

Theorem I. If $A \subset \Psi(X, Y)$ and I is a compact operator from X to Y then $(A+K) \in \Psi(X, Y)$ and $i(A+K)=i(A)$.

Proof. By O^{\prime} there is a bounded operator A^{\prime} such that (5) anon (5) hold. Now

$$
\begin{aligned}
& A^{\prime}(A+K)=I+F_{I}+A^{\prime} K \text { on } D(A) \\
& (A+K) A^{\prime}=I+F_{2}+K A^{\prime} \text { on } Y .
\end{aligned}
$$

Since A^{\prime} is bounded, the operators $A^{\prime} K$ and $K A^{\prime}$ are compact. We now apply 05 to obtain that $(A+K) \in \Psi(X, Y)$.

Now A^{\prime} is a bounded operator from Y to $D(A)$. If we equip $D(A)$ with the graph norm of A, it becomes a Banach space \tilde{X} and A^{\prime} becomes a Frecholn operator from Y to \tilde{X}. Also $A \subset v(\tilde{X}, Y)$ with al A) and $B(A)$ the sane. Hence by (J)

$$
\begin{equation*}
i(A)+i\left(A^{\prime}\right)=i\left(I+F_{I}\right)=0(\text { Riesz }) . \tag{11}
\end{equation*}
$$

But by (10)

$$
i(A+K)+i\left(A^{i}\right)=i\left(I+F_{2}+K A^{\prime}\right)=0 .
$$

Hence $i(A+K)=i(A)$ and the proof is complete.
Theorem 2. For $A \in \Psi(X, Y)$ there is an $\varepsilon>0$ such that for any bounded operator T from X to Y with $\|T\|<\varepsilon$ one has $(A+T) \in Y(X, Y), i(A+T)=i(A)$ and $\alpha(A+T) \leq \alpha(A)$.

Proof. By 04 there is a bounded operator A^{\prime} satisfying (5) and (6). Then

$$
\begin{align*}
& A^{\prime}(A+T)=I+F_{I}+A^{\prime} T \\
& (A+T) A^{\prime}=I+F_{2}+T A^{\prime} . \tag{IT}
\end{align*}
$$

Take $\varepsilon=\left\|A^{\prime}\right\|^{-1}$. Then $\left\|A^{\prime} T\right\|<1$ and $: T A^{\prime} \|<1$. Thus the operators $I+A^{\prime} I$ and $I+T A^{\prime}$ are invertible and

$$
\begin{aligned}
& \left(I+A^{\prime} T\right)^{-I} A^{\prime}(A+T)=I+\left(I+A^{\prime} I\right)^{-l_{F}} \\
& (A+T) A^{\prime}\left(I+T A^{\prime}\right)^{-I}=I+F_{2}\left(I+T A^{\prime}\right)^{-I}
\end{aligned}
$$

Thus by 05, $(A+T) \in \Psi . \operatorname{Ey}(12)$ and Theorem 1

$$
i(A+T)+i\left(A^{\prime}\right)=i\left(I+F_{2}+T A^{\prime}\right)=i\left(I+T A^{\prime}\right)=0 .
$$

Combining this with (II) we see that $i(A+T)=i(A)$. It remains to prove $a(A+T) \leq c(A)$. By 03, $A^{\prime}(A+T)=I+A^{\prime} T$ on $D(A) \cap X^{\prime}$ and hence is one-to-one on this manifold. Noreover $N(A+T) \cap X^{\prime}=\{0\}$. For if y is in this set, it is in $D(A) n X^{\prime}$ and $(A+T) y=0$. Thus $\left(I+A^{\prime} T\right) y=0$ showing that $y=0$. Since

$$
N(A+T)\left(X^{\prime} \subseteq X=N(A) \oplus X^{\prime},\right.
$$

we see that $\operatorname{dim} \mathbb{N}(A+T) \leq \operatorname{dim} \mathbb{N}(A)$ and the proof is complete.
In the sequel we shall make continual use of the following lema.

Lemma 2. Let \approx be a Banach space dense in X and Iet A be a Iinear operator from X to Y with $D(A)=\tilde{X}$. If $A \in \Psi(\tilde{X}, Y)$, then $A \in \Psi(X, Y)$.

Proof. Let E be the linear operator from X to \tilde{X} with $D(E)=D(A)$ and $E x=x$ for $x \in D(E)$. One checks easily that $E \in \Psi(X, \tilde{X})$. Thus $A E E \Psi(X, Y)$ by Lemma 1. But $A=A E$ and the conclusion follows.

An operator B from X to Y is called A-compact if $D(B) \supseteq D(A)$ and for every sequence $\left\{x_{n}\right\} \subseteq D(A)$ such that

$$
\left\|x_{n}\right\|+\left\|A x_{n}\right\| \leq \text { const. }
$$

the secuence $\left\{B x_{n}\right\}$ has a convergent subsequence.
Theoren 3. Is $A \subset \Psi(X, Y)$ and B is A-compact, then $(A+B) \in \Psi(X, Y)$ and $i(A+B)=i(A)$.

Proof. If we equip $D(A)$ with the graph nora
$\|x\|+\|A x\|$, it becomes a Eanach space \tilde{X} (since A is closed). If we now consicier A as an operator fron \hat{X} to Y, we have $A \in \mathbb{Y}(\hat{X}, Y)$. Moreover B is compact from \tilde{X} to Y. Hence by Theorem l, $(A+B) \in \Psi(\tilde{X}, Y)$ with $i(A+B)=i(A)$. We now apply Leman 2 to obtain $(A+B) \in \Psi(X, Y)$.

Theoren 4. For each $A \in \Psi(X, Y)$ there is an $\varepsilon>0$
such that

$$
\|B x\| \leq \varepsilon(\|x\|+\|A x\|), \quad x \in D(A),
$$

holding for any operator E fron X to Y with $D(B) \equiv D(A)$ inolies that $(A+B) \in \Psi(X, Y), i(A+B)=i(A)$, and $\alpha(A+B) \leq a(A)$.

Proof. Similar to that of Theorem 3.
For an arbitrary operator A acting in a Eanach space X the Fredholm set of A, denoted by Φ_{A}, is the set of those complex λ for which $A-\lambda \in \Psi(X, X)$. We have by Theoren I and 2

Theorem 5. The set Φ_{A} is open and $i(A-\lambda)$ is constant on each component.

Theorem 5. If K is a compact operator in X, then $\Phi_{A+K}=\Phi_{A}$ and $i(A+K-\lambda)=i(A-\lambda)$ there.

In acdition one also has
Theorem 7. on each component of Φ_{A}, the quantities $\alpha(A-\lambda)$ and $B(A-\lambda)$ are constant except possibly on a discrete set of points where they take on larger values.

$$
\stackrel{1}{2}-\quad-
$$

The proof of Theorer 7 can be made to rest upon
Lemma 3. If A and B are linear operators fron X to Y with $A \in \Psi(X, Y)$ and B bounded, then there is an $\varepsilon>0$ such that $\alpha(A-\lambda B)$ is constant for $0<|\lambda|<\varepsilon$.

Proof. Assume first that $i(A)=0$. Let x_{1}, \ldots, x_{k} be a basis for $\mathbb{N}(A)$ and y_{1}, \ldots, y_{k} be a basis for some direct coms lement of $R(A)$ in Y. Let $x_{1}^{\prime}, \ldots, x_{k}^{\prime}$ be a system of bounded linear functionals on X such that

$$
x_{i}^{\prime}\left(x_{j}\right)=\delta_{i j}(=\text { Kronecker delta }) \text {. }
$$

One checks easily that the operator defined by

$$
\tilde{A} x=A x+\sum_{i=1}^{k} x_{j}^{\prime}(x) y_{j}
$$

is continuously invertible. Now x is a solution of $(A-\lambda E) x=0$ if and only is

$$
(\tilde{A}-\lambda B) x=\sum_{i=I}^{k} x_{i}^{\prime}(x) y_{i}
$$

For some $\varepsilon_{1}>0, \tilde{A}-\lambda B$ is continuously invertible for $|\lambda|<\varepsilon_{1}$ and hence

$$
\begin{aligned}
x & =\tilde{A}^{-1} \sum_{j=0}^{\infty} \lambda^{j}\left(B \tilde{A}^{-1}\right)^{j} \frac{k}{\sum_{i=1}} x_{i}^{\prime}(x)_{y_{i}} \\
& =\sum_{i=1}^{k} x_{i}^{\prime}(x) \cdot \sum_{j=0}^{\infty} \lambda^{j}\left(\tilde{A}^{-1} B\right)^{j} x_{i} \\
& =\sum_{i=1}^{k} x_{i}^{\prime}(x) f_{i}(\lambda),
\end{aligned}
$$

where $f_{i}(\lambda)$ are known vector valued functions in X analytic on $|\lambda|<\varepsilon_{1}$. Thus

$$
x_{m}^{\prime}(x)=\sum_{i=I}^{k} x_{i}^{\prime}(x) x_{m}^{\prime}\left(f_{i}(\lambda)\right)
$$

or

$$
\sum_{i=1}^{k}\left[\delta_{m i}-x_{i n}^{\prime}\left(f_{i}(\lambda)\right)\right] x_{i}^{\prime}(x)=0
$$

Conversely, if $\rho_{1}, \cdots, \xi_{k}$ are solutions of

$$
\begin{equation*}
\sum_{i=1}^{k}\left[\delta_{m i}-x_{m}^{\prime}\left(f_{i}(\lambda)\right)\right]_{i}=0 \tag{13}
\end{equation*}
$$

then by working back we see that

$$
x=\sum_{i=1}^{k}{ }_{j} f_{i}(\lambda)
$$

is a solution of $(A-\lambda B) x=0$. Thus $\alpha(A-\lambda B)$ coincices with the number of linearly indepencient solutions of (I3). If every coefficient in (13) vanishes identically in $|\lambda|<\varepsilon_{I}$, there are exactly k linearly indepencient solutions and $a(A-\lambda B)=k$ for $|\lambda|<\varepsilon_{I}$. Otherwise there is a minor of largest order in the determinant of (13) which does not vanish identically. Since this minor is analytic in λ, it can vanish at host at isolated points. Thus there is an $\varepsilon>0$ such that this minor is different from 0 in $0<|\lambda|<\varepsilon$. The number of independent solutions of (13) is constant on this set and hence
the same is true for $\alpha(A-\lambda B)$. Thus the lemna is proved for $i(A)=0$.

Next consider the case $i(A)>0$. Let Z be a normed
$|i(A)|$-dimensional space and let $Y_{1}=Y+Z$ with norm
$|y+z|=|y| \oplus|z|$ when $y \in Y, z \in Z$. Consider A and B operators fron X to Y_{1}. For these spaces $i(A)=0$ and the previous case apnlies. But $\alpha(A-\lambda B)$ is not changed when we replace Y by Y_{1}. Thus the lemma is proved in this case.

If $i(A)<0$, let Z be an $i(A)$-dimensional space and set $X_{1}=X \oplus Z$. Let \hat{A} and \hat{B} be extensions of A and B to X_{1} which vanish on Z. Then $i(\hat{A})=0$ and the first case applies. We then merely observe that $\alpha(\hat{A}-\lambda \hat{B})=\alpha(A-\lambda B)+i(A)$ and the proof is complete.

Proof of Theorem 7. Let Ω be a component of Φ_{A}. Let λ_{0} be any point in Ω where $a(A-\lambda)$ has its minimun value in Ω. Then by Lemma 3 there is a neighborhood about λ_{0} where $a(A-\lambda)$ has this constant value. Let λ_{1} be any other point in Ω. It suffices to prove that there is a deleted neighborhood about λ_{I} in which $\alpha(A-\lambda)$ has this minimum value, Connect λ_{1} to λ_{0} Dy a smooth curve in Ω. At each point of this curve there is a deleted neighborhood in which $a(A-\lambda)$ is constant (Lema 3). Since the curve is compact, there is a finite set of such neighborhoods covering it. Since in each deleted neighborhood $a(A-\lambda)$ is constant and each one overlaps with at least one other, they all have the same constant value for $\alpha(A-\lambda)$, namely the minimurn value. Q.E.D.

In later applications we shall need
Lemma 4. If $B \in \Psi(Z, X), A$ is an operator from X to Y with $D(A)$ dense in X, and $A B \in \Psi(Z, Y)$, then $A \in \Psi(X, Y)$.

Proof. Let B^{\prime} be the operator corresponding to B described in 03. One easily checks that $B^{\prime} \in \Psi(X, \tilde{Z})$ where \tilde{Z} is $D(B)$ under the Graph norm of B. By hypothesis $A B \in \Psi(\tilde{U}, Y)$ and hence $A B B^{\prime} \in Y(X, Y)$. But $A B B^{\prime}=A+A F$, where F is bounded and of finite ranit (04). Hence $A F$ is a compact operator. We now apply Theorem I to conclude that $A \in \Psi(X, Y)$.

Lemia 5. If $A \in \Psi(X, Y), B$ is an operator from Z to X With $D(B)$ dense in Z, and $A B \in \Psi(Z, Y)$, then $B \in \Psi(Z, X)$.

Proof. Following the same procedure as in the prooi of Lem:a 4, we have $A^{\prime} A B \in \Psi(Z, X)$, anci hence in $\Psi(\tilde{Z}, X)$. Since $A^{\prime} A B=B+F B$, where F is of finite rank, the operator $F B$ is compact from \tilde{Z} to X. Hence $B \in \mathbb{Y}(\tilde{Z}, X)$ (Theorem I) and we can appiy Le:na 2 to conclude that $B \in \Psi(Z, X)$.
3. Weyl's Theoreli andi Ceneralizations

Let T be a self-adjoint operator in a Hilbert space H and let K be a symatric, conpletely continuous operator in H. Then $T+K$ is also self-adjoint. One night ask how $\mathfrak{f}(\mathrm{T})$ and $\sigma(T+K)$ compare. The answer was given by H. Weyl [13].

$$
\text { Theoren 3. If } \lambda \text { is in } *(T) \text { but not in }(T+K) \text {, it must }
$$ be an isolated eigenvalue or finite ultiplicity.

Proor. We note irirst that since T is self-adjoint, it
is closed, and hence $\rho(T) \subseteq \Phi_{T}$. Thus if $\lambda \in \sigma(T)$ but not in $c(T+K)$, it must be in $\bar{\Phi}_{T}=\Phi_{T+K}$ for otherrise it could not be in $\rho(T+K)$. Thus $T-\mu$ is a Fredholm operator for μ in a neighborhood of λ. Thus $\alpha(T-\mu)$ is constant in some deleted neighborhood of λ (Lemma 3). Since all non-real μ are in $\rho(T)$, we have $\alpha(T-\mu)=0$ in this cleleted neighborhood.

Theorem 9 . If $\lambda \in(T)$ is an isolated eicenvalue of finite multiplicity, there is a symetric, completely continuous operator K in H such that $\lambda \in p(T+K)$.

Proor. We Pirst show that $\lambda \in \Phi_{\mathrm{T}}$. Since. $\beta(T-\lambda)=\alpha(T-\lambda)<\infty$, the oniy thing which must be veriried is that $R(T-\lambda)$ is closed in H, i.e., that the inequality

$$
\begin{equation*}
\|x\| \leq C\|(T-\lambda) x\| \tag{14}
\end{equation*}
$$

holds for $x \in D(T) \cap N(T-\lambda)^{\perp}(O L)$. Now λ is the only point of $T(T)$ in sone interval $[a, b]$, where $a<\lambda<b$. If $\left\{E_{\lambda}\right.$? is the spectral family for T, then the projection $E_{b}-E_{a}$ maps into $N(T-\lambda)$. But

$$
\begin{aligned}
& \|(T-\lambda) x\|^{2}=\int_{-\infty}^{\infty}(\mu \cdots \lambda)^{2} d\left\|E_{\mu} x\right\|^{2} \\
& \geq(b-\lambda)^{2} \int_{b}^{\infty} d\left\|E_{\mu} x\right\|^{2}+(a-\lambda)^{2} \int_{-\infty} a\left\|E_{u} x\right\|^{2} \\
& =(b-\lambda)^{2}\left\|\left(1-E_{b}\right) x\right\|^{2}+(a-\lambda)^{2}\left\|E_{a} x\right\|^{2}
\end{aligned}
$$

If $x \in D(T) \cap \mathbb{T}(T-\lambda)^{\perp},\left(E_{b}-E_{a}\right) x=0$ and hence (14) holds. Now let h_{1}, \ldots, h_{k} be a basis for $N^{\prime} T-\lambda$) satisfying

$$
\left(h_{i}, h_{j}\right)=\delta_{i j}
$$

and set

$$
K x=\sum_{j=1}^{k}\left(x, h_{j}\right) h_{j}
$$

Then K is bounded, symnetric and of inite rank. Thus $T+K-\lambda$ is a Fredinolm operator. Since $\alpha(T+K-\lambda)=\beta(T+K-\lambda)=0$, $\lambda \in \rho(T \div K)$.

We see from Weyl's theorem that the points of $\sigma(T)$ which remain invariant under any symmetric, completely continuous perturbations are precisely those points which are not isolated eigenvalues of finite multiplicity. The set of such points is called the essential spectrum of T and denoted by $\sigma_{e}^{-}(T)$. Thus Theorers 8 and 9 can be written as

Theoren 10. If T is self-adjoint and K is symnetric and completely continuous, then

$$
\sigma_{e}(T+K)=\sigma_{e}(T)
$$

From the proofs of Theorens 8 and 9 we also have
Corollary 1. $\sigma_{e}(T)$ is the complement $C \Phi_{T}$ of Φ_{T} in the complex plane.

For :any applications it is inportant to generalize to arbitrary closed operators in Banach space and arbitrary
compact perturbations. It is no longer true that the invariant points of the spectrun are those which are not isolated eigenvalues of finite multiplicity. Wole [I4] defines the essential spectrum by means of property expressed in Corollary l. We denote the essential spectrum according to this definition by $\sigma_{\text {evi }}(A)$.

Definition. For any closed operator A in a Banach space $X, \sigma_{\text {eW }}\left(A_{-}\right)=C \Phi_{A}$.

We have imnediately by Theorem 6

Theoren ll. For any conpletely continuous operator K,

$$
\sigma_{\mathrm{ew}}(A+K)=\sigma_{e W}(A)
$$

We shall also employ another ciefinition of essential spectrua.

Definition. For a closed operator A ir. a Banach space $\mathrm{X}, \sigma_{\text {en }}(A)$ is the largest subset of $\sigma(A)$ which remains invariant under arbitrary compact perturbations.

Theorem 12. $\sigma_{\mathrm{em}}(A)$ consists of all complex λ except those $\lambda \epsilon \Phi_{A}$ with $i(A-\lambda)=0$.

Proof. If $\lambda \in \mathbb{T}_{A}$ and $i(A-\lambda)=0$, then the example given in the proof of Lema 3 shows that there is an operator F of finite rank for which $\lambda \in p(A+F)$. If $i(A-\lambda) \neq 0$, then for every compact operator $K, i(A+K-\lambda) \neq 0$ (Theorem 6) and hence $\lambda \in F(A+K)$. If $\lambda \varepsilon \Phi_{A^{\prime}}$ then $\lambda \& \Phi_{A+K}$ and again $\lambda \in \sigma(A+K)$.

We shall now give soine theorens on the invariance of $\sigma_{e w}(A)$ and $\sigma_{e n}(A)$ under different types of perturbations. Throurhout, we shall assuine that A is a closed operator with ciense donain in a Banach space X and B an operator in X with $D(B) \supseteq D(A)$.

Theoren 13. If B is A-compact, then

$$
\begin{equation*}
\sigma_{\mathrm{eW}}(A+B)=\sigma_{\mathrm{eN}}(A) \tag{15}
\end{equation*}
$$

and.

$$
\begin{equation*}
\sigma_{e n}(A+B)=\sigma_{e_{-1}}(A) \tag{16}
\end{equation*}
$$

Prool. We prove the theorem by showing that $\Phi_{A}=\Phi_{A+S}$ and that $i(A-\lambda)=i(A+E-\lambda)$ for $\lambda \in \Phi_{A}$. If $\lambda \in \Phi_{A}$, then $\lambda \in \Phi_{A+B}$ and the index relationship holds (Theoren 3). Hence $\Phi_{A}=\Phi_{A+B}$. If $\lambda \in \Phi_{A+B}$, it follows, in particular, that $A+B$ is closed. Since A is closed, we have

$$
\begin{equation*}
\|A x\| \leq C(\|x\|+\|(A+B) x\|), \tag{17}
\end{equation*}
$$

Which expresses the fact that A is a closed operator defined. everymhere on the Banach space $D(A+B)=D(A)$ under the graph nor... $\|x\|+\|(A+E) x\|$. Hence it is Douncer on this set. From (17) it follows that B is $(A+B)$-compact. We now apply Theorem \bar{y} to $A+B$ with perturbation $-B$. Thus $\lambda \in \Phi_{A}$. Ifence $\Phi_{A+B} \Phi_{A}$, and the theore:. is proved.

Theoren I4. If $\lambda \in \rho(A) \cap \Phi_{A+B}$ and either $(A-\lambda)^{-1} B$ or $B(A-\lambda)^{-1}$ is $A-c o m p a c t ~ t h e n ~(15) ~ h o l c i s . ~ I f, ~ i n ~ a d c i t i o n, ~$ $i(A+B-\lambda)=0$, then (I5) hole's.

Proor. We employ the icientities

$$
\begin{equation*}
(A+B-\mu)-(A-\mu)(A-\lambda)^{-I}(A+B-\lambda)=(\mu-\lambda)(A-\lambda)^{-I} B \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
(A+B-\mu)-(A+B-\lambda)(A-\mu)(A-\lambda)^{-1}=(\mu-\lambda) B(A-\lambda)^{-I} \tag{19}
\end{equation*}
$$

Assume that $(A-\lambda)^{-I_{B}}$ is A-compact. We equip $D(A)$ with the nom $\|x\|+\|A x\|+\|B x\|$. Under it, $D(A)$ becomes a Banach space \tilde{X}. For if $x_{n} \rightarrow x, A x_{n} \rightarrow y, B x_{n} \rightarrow z$, then $x \in D(A)$ and $A x=y$ sirce A is closed, while $(A+B) x=y+z$ because $A+B$ is closed. Therefore $B x=z$. Now if $\mu E \Phi_{A+B}, A+B-\mu$ is a Fredholm operator from \tilde{X} to X. Moreover, $(A-\lambda)^{-1}$ is a compact operator fron \tilde{X} to X. Thus

$$
\begin{equation*}
(A-\mu)(A-\lambda)^{-1}(A+B-\lambda) \tag{20}
\end{equation*}
$$

is a Fredholn operator from \tilde{X} to X (Theorem I). How $(A-\lambda)^{-1}(A+B-\lambda) \in \Psi(\tilde{X}, \tilde{X})($ Len:a I). Thus $(A-\mu) \in \Psi(\tilde{X}, X)$ (Lemina 4) and hence $(A-\mu) \in \Psi(X, X)$, i.e., $\mu \in \Phi_{A}$. Therefore $\Phi_{A+B} \subseteq \Phi_{A}$. Converscly, if $\mu \in \Phi_{A}$, then the operator (20) is in $\mathrm{V}(\tilde{X}, X)$. Hence the sane is true of $A+B-\mu$, i.e., $\mu \in \Phi_{A+B}$. Thus $\Phi_{A}=\Phi_{A+B}$. This proves (Ij). If $i(A+B-\lambda)=0$, we have by (18)

$$
i(A+B-\mu)=i(A-\mu)
$$

and hence (16) holds.
Theorem 15. If B is A^{2}-compact and $\lambda \in \Phi_{A} \cap \Phi_{A+B}$, then (15) holds. If, in addition, $i(A-\lambda)=i(A+B-\lambda)$, then (10) holds.

Proof. Consider the norm

$$
\|x\|=\|x\|+\|A x\|+\|B x\|+\left\|A^{2} x\right\|+\|B A x\|
$$

on $D\left(A^{2}\right)$. We claim that $D\left(A^{2}\right)$ equiped with this norm becones a Banach space \tilde{X}. In fact if $x_{n} \rightarrow x, A x_{n} \rightarrow y$, $B x_{n} \rightarrow z, A^{2} x_{n} \rightarrow u, B A x_{n} \rightarrow v$, then $x \leq D(A)$ since A is closed and $A x=y$, while $y \in D(A)$ and $A y=u$ for the same reason. Thus $x \in D\left(A^{2}\right)$. Since $A+B$ is closed, $(A+B) x=y+z$ and hence $B z=z$. The sane reasoning gives $(A+B) A x=u+v$, whence BAx $=\mathrm{V}$. Now suppose $\mu E \Phi_{\mathrm{A}}$. Then the operator $(A+B-\lambda)(A-\mu) \in \Psi(X, X)$ by Lema I and hence is in $\Psi(\tilde{X}, X)$. However, when we consider B as an operator from \widetilde{X} to X, it becomes a compact operator. Since

$$
\begin{equation*}
(A+B-\lambda)(A-\mu)-(A+B-\mu)(A-\lambda)=(\lambda-z) B, \tag{21}
\end{equation*}
$$

we see that $(A+B-\mu)(A-\lambda)$ is a Frecinoln operator Iron \tilde{X} to X (Theorem 1). Thus it is in $\Psi(X, X)$ (Lema 2). Since $(A-\lambda) \in \Psi(X, X)$ ve can apply Lemia 4 to obtain that $(A+B-\mu) \in \Psi(X, X)$. Hence $\Phi_{A} \subseteq \Phi_{A * B}$. The same reasoning applied in the opposite cirection gives $\Phi_{A}=\Phi_{A+E}$. Moreover for $\mu \in \Phi_{A}$ we have by (21), Lenma 1 and Theore:n I

$$
i(A+B-\lambda)+i(A-\mu)=i(A+B-\mu)+i(A-\lambda)
$$

Hence

$$
i(A-\mu)=i(A+B-\mu)
$$

Thus $\delta_{e m}(A+B)=\sigma_{e m}(A)$ ar!d the proof is complete.
We see from the proof of Theorem 15 that the assumption that B is A^{2}-compact can be consjderaibly weakened.
4. Remariss

RI. In the Russian Iiterature operators satisfying properties $1,3-5$ are called Φ-operators, with the Φ standing for Frecholm (cf. [4]). The tem Fredholm operator seems to be reserved for Φ-operators having inclex 0 . We have added assumption 2 fcr convenience and do not differentiate on the basis of inciex.

R2. Observations 04 and 05 are due to Atkinson [I] for bounded operators (ci. also [11, 12]).

R3. Lemma 1 is also dut to Atkinson [1] for bounded operators. For unbounded operators it is due to Gohberg [3], althoush there seens to be a gap in his proof (cr. A.M.S. translation of [4]). The rirst part of our proof follows that of [4], but our proof that $R(A B)$ is closed is different. Our proof that $A B$ is a closed operator was taken from Kato [8]. Other proofs may be found in $[6,8]$.

R4. For the histories of Theorems 1 and 2 see [4]. Our proofs borrow iceas from Seeleyr [12]. Our proof of $\alpha(A+T) \leq \alpha(A)$ appears to be much simpler than any forat in the literature.

R5. The idea for Lemma 2 and its proof came from Kato [8].

R6. Theorems 3 anci 4 as well as the device employed in obtaining them from Theorens 1 and 2 are due to Nagy [9].

R7. Generalizations of Theorems 5-7 can be found in $[8,7]$. Cur proof of Theorem 7 is taken directly from [4].

R8. Lemmas 4 and 5 are apparently new.

R9. The term essential spectrum originated in [5] where it was applied to self-adjoint problems for ordinary differential equations on a half-line. In this case the essential spectrum is that part of the spectrum which remains invariant under changes in the boundary conditions. Browder [2] has proposed still another definition.

RIO. Theorens 12, 14, 15 are apparently new. Similar results may be found in $[2,14]$.

Eibliography

I. F. V. Atkinson, Mat. Sb. 28(70)(1951)3-14.
2. F. E. Browder, Math. Ann. 142 (1961)22-130.
3. I. C. Gohberg, Mat. Sb。33(75)(1953)193-198.
4. I. C. Gohbers and M. G. Krein, Usp. Mat. Nauk 12 (1957) 43-118; Trans1. A.M.S., 13(1960)185-26́4.
5. Philip Hartman and Aurel Wintner, Aner. J. Math. 72 (1950)545-552。
6. J. T. Joichi, dissertation, Illinois, 1959.
7. Shmuel Kaniel and Martin Schechter, Comn. Pure Appl. Math., $16(1963) 423-448$.
8. Tosio Kato, J. Analyse Math., 6(1958)261-322.
9. Béla Szo-Nagy, Acta Sci. Nath. Szeged 14 (1951)125-137.
10. Nartin Schechter, Invariance of the essential spectrum, to appear.
11. J. T. Schwartz, Comm. Pure Appl. Nath., 15(1962)75-90.
12. R. T. Seeley, J. Math. Ann. Appl., $7(1963) 289$ - 309 .
13. Herman Weyl, Rend. Circ. Mat. Palermo, 27(1909)373-392.

